Optimal local embeddings of Besov spaces involving only slowly varying smoothness

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness

We characterize local embeddings of Besov spaces B p,r involving only a slowly varying smoothness b into classical Lorentz spaces. These results are applied to establish sharp local embeddings of Besov spaces in question into Lorentz-Karamata spaces. As consequence of these results, we are able to determine growth envelopes of spaces B p,r and to show that we cannot describe all local embedding...

متن کامل

Sharp Embeddings of Besov Spaces with Logarithmic Smoothness

We prove sharp embeddings of Besov spaces B p,r (R ) with the classical smoothness σ and a logarithmic smoothness α into Lorentz-Zygmund spaces. Our results extend those with α = 0, which have been proved by D. E. Edmunds and H. Triebel. On page 88 of their paper (Math. Nachr. 207 (1999), 79–92) they have written: “Nevertheless a direct proof, avoiding the machinery of function spaces, would be...

متن کامل

Local Growth Envelopes of Besov Spaces of Generalized Smoothness

The concept of local growth envelope (ELGA, u) of the quasi-normed function space A is applied to the Besov spaces of generalized smoothness B p,q (Rn).

متن کامل

Approximation and entropy numbers in Besov spaces of generalized smoothness

Let X and Y be Banach (or quasi-Banach) spaces and let T ∈ L(X,Y ) be a compact operator. In order to measure “the degree of compactness of T” one can use the asymptotic decay of the sequence of approximation numbers of T or the decay of the sequence of entropy numbers of T. In general, the behaviour of these sequences is quite different. However, as we shall show, under certain assumptions the...

متن کامل

Optimal cubature in Besov spaces with dominating mixed smoothness on the unit square

We prove new optimal bounds for the error of numerical integration in bivariate Besov spaces with dominating mixed order r. The results essentially improve on the so far best known upper bound achieved by using cubature formulas taking points from a sparse grid. Motivated by Hinrichs’ observation that Hammersley type point sets provide optimal discrepancy estimates in Besov spaces with mixed sm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2020

ISSN: 0021-9045

DOI: 10.1016/j.jat.2020.105393